56 research outputs found

    The future of small farms for poverty reduction and growth:

    Get PDF
    "The people operating small farms in developing countries have to cope with the risks of these small businesses and have long faced heavy challenges. Today, these challenges are particularly severe, and the aspirations of young people on small farms have changed. Globalization and the integration of international markets are stimulating intense competition, offering some opportunities but also new risks. In light of these pressures and others, many of the world's millions of small farmers are simply not making it. Indeed, half of the world's undernourished people, three-quarters of Africa's malnourished children, and the majority of people living in absolute poverty live on small farms. The transformation of the small-farm economy is one of the biggest economic challenges of our time. For some, it entails growth into specialized, market-oriented farms; for others, part-time farming combined with off-farm rural jobs; and for others, a move out of agriculture. The pathways of transformation differ by region and location and will take decades. Policy must take a long-run view to support and guide this process efficiently, effectively, and in social fairness. The role of women farmers and their livelihoods requires particular attention. In this paper, Peter Hazell, Colin Poulton, Steve Wiggins, and Andrew Dorward address several crucial questions. Do small farms in fact have a future? In what situations can small farms succeed? What strategies are most appropriate for helping to raise small-farm productivity? The authors review both sides of the debate over the future of small farms before coming to their conclusions. Coming down firmly on the side of policy support for small farms, they point to small farms' significant potential for reducing poverty and inequity. They also clarify the differing roles of and needs for small farms in different country contexts and spell out a policy agenda for promoting small-farm development. This discussion paper is based on a literature review and the deliberations of an international workshop, “The Future of Small Farms,” organized by the International Food Policy Research Institute (IFPRI) 2020 Vision Initiative, the Overseas Development Institute (ODI), and Imperial College London in Wye, England, from June 26 to 29, 2005. (A proceedings volume for this workshop is available from IFPRI, www.ifpri.org/events/seminars/2005/smallfarms/sfproc.asp.) We hope that this discussion paper will help stimulate renewed attention among many stakeholders— including policymakers, researchers, the private sector, and nongovernmental organizations—to small-scale agricultural development. Healthy and productive small farms could serve as a crucial mechanism for achieving the poverty and hunger Millennium Development Goals. " From Foreword by Joachim von BraunPro-poor growth, Agriculture, Economic development, small farms, Poverty reduction, Sustainable livelihoods, Non-farm development, Rural-urban linkages, small farms,

    Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal.

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention

    Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal.

    Get PDF
    The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance

    Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Get PDF
    Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.

    Get PDF
    With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches

    Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal.

    Get PDF
    Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases

    Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data.

    Get PDF
    A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA) in human cancer. Our study employs Whole Genome DNA Sequence (WGS) data from tumor samples (n = 103) to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%), Chr6q27 (16.50%) and Chr18q12.3 (17.48%). Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40). We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR) pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.We acknowledge support from Cancer Research UK (C5047/A22530, C309/A11566, C368/A6743, A368/A7990, C14303/A17197) and the Dallaglio Foundation. We also acknowledge support from the National Institute of Health Research (NIHR) (The Biomedical Research Centre at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust and the project "Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT)" [G0500966/75466]). We thank the Wellcome Trust, Bob Champion Cancer Trust, The Orchid Cancer appeal, The RoseTrees Trust, The North West Cancer Research Fund, Big C, The King family, and The Masonic Charitable Foundation for funding. This research is supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001202), the UK Medical Research Council (FC001202), and the Wellcome Trust (FC001202). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore